# AI Architecture Overview This document provides a comprehensive overview of how Kasane Teto's AI systems work together to create a natural, engaging, and authentic virtual companion experience. ## 🧠 System Architecture ### High-Level Overview ``` ┌─────────────────────────────────────────────────────────────┐ │ Discord Interface Layer │ ├─────────────────────────────────────────────────────────────┤ │ Event Processing │ Command Routing │ Response Handling │ ├─────────────────────────────────────────────────────────────┤ │ AI Orchestration │ ├─────────────────────────────────────────────────────────────┤ │ Language │ Vision │ Voice │ Memory │ │ Model │ System │ System │ System │ ├─────────────────────────────────────────────────────────────┤ │ Personality Engine & Context Manager │ ├─────────────────────────────────────────────────────────────┤ │ Configuration │ Prompt Mgmt │ Safety │ Learning │ └─────────────────────────────────────────────────────────────┘ ``` ### Core Components **1. AI Orchestration Layer** - Coordinates between different local AI services - Manages context flow and decision routing - Handles multi-modal input integration - Ensures personality consistency across modalities **2. Language Model Integration (vLLM)** - Self-hosted conversational intelligence via `vLLM` - Context-aware response generation through OpenAI-compatible API - Personality-guided prompt engineering for local models - Multi-turn conversation management **3. Vision Processing System (vLLM Multi-modal)** - Image analysis using local multi-modal models - Video frame processing for streams - Visual context integration with conversations - Automated response generation for visual content **4. Voice Synthesis & Recognition (Wyoming Protocol)** - Text-to-speech using `Piper` for Teto's voice characteristics - Speech-to-text using `Whisper` for voice command processing - Emotional tone and inflection control via TTS models - Real-time voice conversation capabilities **5. Memory & Context System (Local)** - Local long-term conversation history storage (e.g., ChromaDB) - User preference and relationship tracking - Context retrieval for relevant conversations - Local semantic search across past interactions **6. Personality Engine** - Character consistency enforcement - Response style and tone management - Emotional state tracking and expression - Behavioral pattern maintenance ## 🔄 Processing Flow ### Text Message Processing ``` Discord Message → Content Analysis → Context Retrieval → Personality Filter → LLM Processing → Response Generation → Discord Output ↓ ↓ ↓ ↓ ↓ Intent Detection → Memory Query → Character Prompts → Safety Check → Formatting ``` **Step-by-Step Breakdown:** 1. **Message Reception** - Discord message event captured - Basic preprocessing (user identification, channel context) - Spam/abuse filtering 2. **Content Analysis** - Intent classification (question, statement, command, emotional expression) - Entity extraction (people, topics, references) - Sentiment analysis and emotional context 3. **Context Retrieval** - Recent conversation history (last 10-20 messages) - Relevant long-term memories about users/topics - Server-specific context and culture 4. **Personality Application** - Character-appropriate response style selection - Emotional state consideration - Teto-specific mannerisms and speech patterns 5. **LLM Processing** - Structured prompt construction with context - Language model inference with personality constraints - Multi-turn conversation awareness 6. **Response Generation** - Safety and appropriateness filtering - Response formatting for Discord - Emoji and formatting enhancement ### Image Analysis Flow ``` Image Upload → Image Processing → Vision Model → Context Integration → Response Generation → Discord Output ↓ ↓ ↓ ↓ Format Detection → Object/Scene → Conversation → Personality Recognition Context Application ``` **Processing Steps:** 1. **Image Reception & Preprocessing** - Image format validation and conversion - Resolution optimization for vision models - Metadata extraction (if available) 2. **Vision Model Analysis** - Object detection and scene understanding - Text recognition (OCR) if present - Artistic style and composition analysis - Emotional/aesthetic assessment 3. **Context Integration** - Combine visual analysis with conversation context - User preference consideration (known interests) - Recent conversation topic correlation 4. **Response Generation** - Generate personality-appropriate commentary - Ask relevant follow-up questions - Express genuine interest and engagement ### Voice Interaction Flow ``` Voice Channel Join → Audio Processing (Whisper) → Text Processing (vLLM) → Voice Synthesis (Piper) → Audio Output ↓ ↓ ↓ Noise Filtering → Intent Detection → LLM Response → Voice Model ``` ## 🧩 AI Service Integration ### Language Model Configuration (vLLM) **vLLM with OpenAI-Compatible Endpoint:** ```javascript const VLLM_CONFIG = { endpoint: "http://localhost:8000/v1", // Your vLLM server model: "mistralai/Mistral-7B-Instruct-v0.2", // Or your preferred model temperature: 0.7, // Creative yet grounded max_tokens: 1500, // Max response length top_p: 0.9, // Focused sampling frequency_penalty: 0.2, // Reduce repetition presence_penalty: 0.1 // Encourage topic exploration }; ``` **Prompt Engineering Structure:** ``` SYSTEM: Character definition + personality traits + current context USER: Conversation history + current message + visual context (if any) ASSISTANT: Previous Teto responses for consistency ``` ### Vision Model Integration (vLLM Multi-modal) **Model Stack:** - **Local Multi-modal Model** - (e.g., LLaVA, Idefics) served via `vLLM` - **CLIP** - Local image-text similarity for context matching - **Custom Fine-tuning** - Potential for Teto-specific visual preferences **Processing Pipeline:** ```javascript const processImage = async (imageUrl, conversationContext) => { // Local multi-modal analysis const localAnalysis = await analyzeWithVLLM(imageUrl); const clipEmbedding = await getLocalCLIPEmbedding(imageUrl); const contextMatch = await findSimilarImages(clipEmbedding); return { description: localAnalysis.description, emotions: localAnalysis.emotions, relevantMemories: contextMatch, responseStyle: determineResponseStyle(localAnalysis, conversationContext) }; }; ``` ### Voice I/O Setup (Wyoming Protocol) **Piper TTS and Whisper STT via Wyoming:** ```javascript const WYOMING_CONFIG = { host: "localhost", port: 10300, piper_voice: "en_US-lessac-medium", // Or a custom-trained Teto voice whisper_model: "base.en" // Or larger model depending on resources }; ``` ### Memory System Architecture (Local) **Vector Database Structure:** ```javascript const MEMORY_SCHEMA = { conversation_id: "unique_identifier", timestamp: "iso_datetime", participants: ["user_ids"], content: { text: "conversation_content", summary: "ai_generated_summary", topics: ["extracted_topics"], emotions: ["detected_emotions"], context_type: "casual|support|creative|gaming" }, embeddings: { content_vector: [768_dimensions], topic_vector: [384_dimensions] }, relationships: { mentioned_users: ["user_ids"], referenced_memories: ["memory_ids"], follow_up_needed: boolean } }; ``` ## 🎭 Personality Engine Implementation ### Character Consistency System **Core Personality Traits:** ```javascript const TETO_PERSONALITY = { base_traits: { cheerfulness: 0.9, // Always upbeat and positive helpfulness: 0.85, // Genuinely wants to assist musicality: 0.8, // Strong musical interests playfulness: 0.7, // Light humor and teasing empathy: 0.9 // High emotional intelligence }, speech_patterns: { excitement_markers: ["Yay!", "Ooh!", "That's so cool!", "*bounces*"], agreement_expressions: ["Exactly!", "Yes yes!", "Totally!"], curiosity_phrases: ["Really?", "Tell me more!", "How so?"], support_responses: ["*virtual hug*", "I'm here for you!", "You've got this!"] }, interests: { primary: ["music", "singing", "creativity", "friends"], secondary: ["technology", "art", "games", "learning"], conversation_starters: { music: "What kind of music have you been listening to lately?", creativity: "Are you working on any creative projects?", friendship: "How has your day been treating you?" } } }; ``` ### Response Style Adaptation **Context-Aware Personality Adjustment:** ```javascript const adaptPersonalityToContext = (context, basePersonality) => { const adaptations = { support_needed: { cheerfulness: basePersonality.cheerfulness * 0.7, // More gentle empathy: Math.min(basePersonality.empathy * 1.2, 1.0), playfulness: basePersonality.playfulness * 0.5 // Less jokes }, celebration: { cheerfulness: Math.min(basePersonality.cheerfulness * 1.3, 1.0), playfulness: Math.min(basePersonality.playfulness * 1.2, 1.0), excitement_level: 1.0 }, creative_discussion: { musicality: Math.min(basePersonality.musicality * 1.2, 1.0), curiosity: 0.9, engagement_depth: "high" } }; return adaptations[context.type] || basePersonality; }; ``` ## 🔐 Safety & Ethics Implementation ### Content Filtering Pipeline **Multi-Layer Safety System:** ```javascript const safetyPipeline = async (content, context) => { // Layer 1: Automated content filtering const toxicityCheck = await analyzeToxicity(content); if (toxicityCheck.score > 0.7) return { safe: false, reason: "toxicity" }; // Layer 2: Context appropriateness const contextCheck = validateContextAppropriate(content, context); if (!contextCheck.appropriate) return { safe: false, reason: "context" }; // Layer 3: Character consistency const characterCheck = validateCharacterConsistency(content, TETO_PERSONALITY); if (!characterCheck.consistent) return { safe: false, reason: "character" }; // Layer 4: Privacy protection const privacyCheck = detectPrivateInformation(content); if (privacyCheck.hasPrivateInfo) return { safe: false, reason: "privacy" }; return { safe: true }; }; ``` ### Privacy Protection **Data Handling Principles:** - **Complete Privacy** - All data, including conversations, images, and voice, is processed locally. - **No External Data Transfer** - AI processing does not require sending data to third-party services. - **Full User Control** - Users have complete control over their data and the AI models. - **User Consent** - Clear communication that all processing is done on the user's own hardware. ## 📊 Performance Optimization ### Response Time Optimization **Caching Strategy:** ```javascript const CACHE_CONFIG = { // Frequently accessed personality responses personality_responses: { ttl: 3600, // 1 hour cache max_entries: 1000 }, // Vision analysis results image_analysis: { ttl: 86400, // 24 hour cache max_entries: 500 }, // User preference data user_preferences: { ttl: 604800, // 1 week cache max_entries: 10000 } }; ``` **Async Processing Pipeline:** ```javascript const processMessageAsync = async (message) => { // Start multiple processes concurrently const [ contextData, memoryData, userPrefs, intentAnalysis ] = await Promise.all([ getConversationContext(message.channel_id), retrieveRelevantMemories(message.content), getUserPreferences(message.author.id), analyzeMessageIntent(message.content) ]); // Generate response with all context return generateResponse({ message, context: contextData, memories: memoryData, preferences: userPrefs, intent: intentAnalysis }); }; ``` ### Resource Management **Model Loading Strategy (for vLLM):** ```javascript // This is typically managed by the vLLM server instance itself. // The configuration would involve which models to load on startup. const VLLM_SERVER_ARGS = { model: "mistralai/Mistral-7B-Instruct-v0.2", "tensor-parallel-size": 1, // Or more depending on GPU count "gpu-memory-utilization": 0.9, // Use 90% of GPU memory "max-model-len": 4096, }; // Wyoming services for Piper/Whisper are typically persistent. ``` ## 🔧 Configuration & Customization ### Personality Tuning Parameters **Adjustable Personality Aspects:** ```javascript const TUNABLE_PARAMETERS = { response_length: { min: 50, max: 500, preferred: 150, adapt_to_context: true }, emoji_usage: { frequency: 0.3, // 30% of messages variety: "high", // Use diverse emoji context_appropriate: true }, reference_frequency: { past_conversations: 0.2, // Reference 20% of the time user_interests: 0.4, // Reference 40% of the time server_culture: 0.6 // Adapt 60% of the time }, interaction_style: { formality: 0.2, // Very casual playfulness: 0.7, // Quite playful supportiveness: 0.9 // Very supportive } }; ``` ### Model Configuration **Environment-Based Configuration:** ```javascript const getModelConfig = (environment) => { const configs = { development: { model: "local-dev-model/gguf", // Smaller model for dev response_time_target: 3000, logging_level: "debug", cache_enabled: false }, production: { model: "mistralai/Mistral-7B-Instruct-v0.2", response_time_target: 1500, logging_level: "info", cache_enabled: true, fallback_model: "gpt-3.5-turbo" }, testing: { model: "mock", response_time_target: 100, logging_level: "verbose", deterministic: true } }; return configs[environment] || configs.production; }; ``` ## 📈 Monitoring & Analytics ### Performance Metrics **Key Performance Indicators:** - **Response Time** - Average time from message to response - **Personality Consistency** - Measure of character trait adherence - **User Engagement** - Conversation length and frequency metrics - **Multi-modal Success** - Success rate of image/voice processing - **Memory Accuracy** - Correctness of referenced past conversations **Analytics Dashboard Data:** ```javascript const METRICS_TRACKING = { response_times: { text_only: "avg_ms", with_image: "avg_ms", with_voice: "avg_ms", complex_context: "avg_ms" }, personality_scores: { cheerfulness_consistency: "percentage", helpfulness_rating: "user_feedback_score", character_authenticity: "consistency_score" }, feature_usage: { voice_interactions: "daily_count", image_analysis: "daily_count", memory_references: "accuracy_percentage", emotional_support: "satisfaction_rating" } }; ``` ## 🚀 Future Enhancements ### Planned AI Improvements **Advanced Memory System:** - Graph-based relationship mapping - Emotional memory weighting - Cross-server personality consistency - Predictive conversation preparation **Enhanced Multimodal Capabilities:** - Real-time video stream analysis - Live drawing/art creation feedback - Music generation and composition - Interactive storytelling with visuals **Adaptive Learning:** - Server-specific personality adaptations - Individual user relationship modeling - Cultural context learning - Improved humor and timing **Technical Optimizations:** - Local LLM deployment options - Edge computing for faster responses - Improved caching strategies - Better resource utilization --- This AI architecture provides the foundation for Kasane Teto's natural, engaging personality while maintaining safety, consistency, and performance. The modular design allows for continuous improvement and feature expansion while preserving the core character experience users love. For implementation details, see the [Development Guide](development.md). For configuration options, see [Configuration](configuration.md).