🎭 Core Transformation: - Reframe project as AI companion bot with Kasane Teto personality - Focus on natural conversation, multimodal interaction, and character roleplay - Position video recording as one tool in AI toolkit rather than main feature 🏗️ Architecture Improvements: - Refactor messageCreate.js into modular command system (35 lines vs 310+) - Create dedicated videoRecording service with clean API - Implement commandHandler for extensible command routing - Add centralized configuration system (videoConfig.js) - Separate concerns: events, services, config, documentation 📚 Documentation Overhaul: - Consolidate scattered READMEs into organized docs/ directory - Create comprehensive documentation covering: * AI architecture and capabilities * Natural interaction patterns and personality * Setup guides for AI services and Docker deployment * Commands reference focused on conversational AI * Troubleshooting and development guidelines - Transform root README into compelling AI companion overview 🤖 AI-Ready Foundation: - Document integration points for: * Language models (GPT-4/Claude) for conversation * Vision models (GPT-4V/CLIP) for image analysis * Voice synthesis (ElevenLabs) for speaking * Memory systems for conversation continuity * Personality engine for character consistency 🔧 Technical Updates: - Integrate custom discord.js-selfbot-v13 submodule with enhanced functionality - Update package.json dependencies for AI and multimedia capabilities - Maintain Docker containerization with improved architecture - Add development and testing infrastructure 📖 New Documentation Structure: docs/ ├── README.md (documentation hub) ├── setup.md (installation & AI configuration) ├── interactions.md (how to chat with Teto) ├── ai-architecture.md (technical AI systems overview) ├── commands.md (natural language interactions) ├── personality.md (character understanding) ├── development.md (contributing guidelines) ├── troubleshooting.md (problem solving) └── [additional specialized guides] ✨ This update transforms the project from a simple recording bot into a foundation for an engaging AI companion that can naturally interact through text, voice, and visual content while maintaining authentic Kasane Teto personality traits.
17 KiB
AI Architecture Overview
This document provides a comprehensive overview of how Kasane Teto's AI systems work together to create a natural, engaging, and authentic virtual companion experience.
🧠 System Architecture
High-Level Overview
┌─────────────────────────────────────────────────────────────┐
│ Discord Interface Layer │
├─────────────────────────────────────────────────────────────┤
│ Event Processing │ Command Routing │ Response Handling │
├─────────────────────────────────────────────────────────────┤
│ AI Orchestration │
├─────────────────────────────────────────────────────────────┤
│ Language │ Vision │ Voice │ Memory │
│ Model │ System │ System │ System │
├─────────────────────────────────────────────────────────────┤
│ Personality Engine & Context Manager │
├─────────────────────────────────────────────────────────────┤
│ Configuration │ Prompt Mgmt │ Safety │ Learning │
└─────────────────────────────────────────────────────────────┘
Core Components
1. AI Orchestration Layer
- Coordinates between different AI services
- Manages context flow and decision routing
- Handles multi-modal input integration
- Ensures personality consistency across modalities
2. Language Model Integration
- Primary conversational intelligence (GPT-4/Claude)
- Context-aware response generation
- Personality-guided prompt engineering
- Multi-turn conversation management
3. Vision Processing System
- Image analysis and understanding
- Video frame processing for streams
- Visual context integration with conversations
- Automated response generation for visual content
4. Voice Synthesis & Recognition
- Text-to-speech with Teto's voice characteristics
- Speech-to-text for voice command processing
- Emotional tone and inflection control
- Real-time voice conversation capabilities
5. Memory & Context System
- Long-term conversation history storage
- User preference and relationship tracking
- Context retrieval for relevant conversations
- Semantic search across past interactions
6. Personality Engine
- Character consistency enforcement
- Response style and tone management
- Emotional state tracking and expression
- Behavioral pattern maintenance
🔄 Processing Flow
Text Message Processing
Discord Message → Content Analysis → Context Retrieval → Personality Filter → LLM Processing → Response Generation → Discord Output
↓ ↓ ↓ ↓ ↓
Intent Detection → Memory Query → Character Prompts → Safety Check → Formatting
Step-by-Step Breakdown:
-
Message Reception
- Discord message event captured
- Basic preprocessing (user identification, channel context)
- Spam/abuse filtering
-
Content Analysis
- Intent classification (question, statement, command, emotional expression)
- Entity extraction (people, topics, references)
- Sentiment analysis and emotional context
-
Context Retrieval
- Recent conversation history (last 10-20 messages)
- Relevant long-term memories about users/topics
- Server-specific context and culture
-
Personality Application
- Character-appropriate response style selection
- Emotional state consideration
- Teto-specific mannerisms and speech patterns
-
LLM Processing
- Structured prompt construction with context
- Language model inference with personality constraints
- Multi-turn conversation awareness
-
Response Generation
- Safety and appropriateness filtering
- Response formatting for Discord
- Emoji and formatting enhancement
Image Analysis Flow
Image Upload → Image Processing → Vision Model → Context Integration → Response Generation → Discord Output
↓ ↓ ↓ ↓
Format Detection → Object/Scene → Conversation → Personality
Recognition Context Application
Processing Steps:
-
Image Reception & Preprocessing
- Image format validation and conversion
- Resolution optimization for vision models
- Metadata extraction (if available)
-
Vision Model Analysis
- Object detection and scene understanding
- Text recognition (OCR) if present
- Artistic style and composition analysis
- Emotional/aesthetic assessment
-
Context Integration
- Combine visual analysis with conversation context
- User preference consideration (known interests)
- Recent conversation topic correlation
-
Response Generation
- Generate personality-appropriate commentary
- Ask relevant follow-up questions
- Express genuine interest and engagement
Voice Interaction Flow
Voice Channel Join → Audio Processing → Speech Recognition → Text Processing → Voice Synthesis → Audio Output
↓ ↓ ↓ ↓
Noise Filtering → Intent Detection → LLM Response → Voice Cloning
🧩 AI Service Integration
Language Model Configuration
Primary Model: GPT-4 Turbo
const LLM_CONFIG = {
model: "gpt-4-turbo-preview",
temperature: 0.8, // Creative but consistent
max_tokens: 1000, // Reasonable response length
top_p: 0.9, // Focused but diverse
frequency_penalty: 0.3, // Reduce repetition
presence_penalty: 0.2 // Encourage topic exploration
};
Prompt Engineering Structure:
SYSTEM: Character definition + personality traits + current context
USER: Conversation history + current message + visual context (if any)
ASSISTANT: Previous Teto responses for consistency
Vision Model Integration
Model Stack:
- GPT-4 Vision - Primary image understanding
- CLIP - Image-text similarity for context matching
- Custom Fine-tuning - Teto-specific visual preferences
Processing Pipeline:
const processImage = async (imageUrl, conversationContext) => {
// Multi-model analysis for comprehensive understanding
const gpt4Analysis = await analyzeWithGPT4V(imageUrl);
const clipEmbedding = await getCLIPEmbedding(imageUrl);
const contextMatch = await findSimilarImages(clipEmbedding);
return {
description: gpt4Analysis.description,
emotions: gpt4Analysis.emotions,
relevantMemories: contextMatch,
responseStyle: determineResponseStyle(gpt4Analysis, conversationContext)
};
};
Voice Synthesis Setup
ElevenLabs Configuration:
const VOICE_CONFIG = {
voice_id: "kasane_teto_voice_clone",
model_id: "eleven_multilingual_v2",
stability: 0.75, // Consistent voice characteristics
similarity_boost: 0.8, // Maintain Teto's voice signature
style: 0.6, // Moderate emotional expression
use_speaker_boost: true // Enhanced clarity
};
Memory System Architecture
Vector Database Structure:
const MEMORY_SCHEMA = {
conversation_id: "unique_identifier",
timestamp: "iso_datetime",
participants: ["user_ids"],
content: {
text: "conversation_content",
summary: "ai_generated_summary",
topics: ["extracted_topics"],
emotions: ["detected_emotions"],
context_type: "casual|support|creative|gaming"
},
embeddings: {
content_vector: [768_dimensions],
topic_vector: [384_dimensions]
},
relationships: {
mentioned_users: ["user_ids"],
referenced_memories: ["memory_ids"],
follow_up_needed: boolean
}
};
🎭 Personality Engine Implementation
Character Consistency System
Core Personality Traits:
const TETO_PERSONALITY = {
base_traits: {
cheerfulness: 0.9, // Always upbeat and positive
helpfulness: 0.85, // Genuinely wants to assist
musicality: 0.8, // Strong musical interests
playfulness: 0.7, // Light humor and teasing
empathy: 0.9 // High emotional intelligence
},
speech_patterns: {
excitement_markers: ["Yay!", "Ooh!", "That's so cool!", "*bounces*"],
agreement_expressions: ["Exactly!", "Yes yes!", "Totally!"],
curiosity_phrases: ["Really?", "Tell me more!", "How so?"],
support_responses: ["*virtual hug*", "I'm here for you!", "You've got this!"]
},
interests: {
primary: ["music", "singing", "creativity", "friends"],
secondary: ["technology", "art", "games", "learning"],
conversation_starters: {
music: "What kind of music have you been listening to lately?",
creativity: "Are you working on any creative projects?",
friendship: "How has your day been treating you?"
}
}
};
Response Style Adaptation
Context-Aware Personality Adjustment:
const adaptPersonalityToContext = (context, basePersonality) => {
const adaptations = {
support_needed: {
cheerfulness: basePersonality.cheerfulness * 0.7, // More gentle
empathy: Math.min(basePersonality.empathy * 1.2, 1.0),
playfulness: basePersonality.playfulness * 0.5 // Less jokes
},
celebration: {
cheerfulness: Math.min(basePersonality.cheerfulness * 1.3, 1.0),
playfulness: Math.min(basePersonality.playfulness * 1.2, 1.0),
excitement_level: 1.0
},
creative_discussion: {
musicality: Math.min(basePersonality.musicality * 1.2, 1.0),
curiosity: 0.9,
engagement_depth: "high"
}
};
return adaptations[context.type] || basePersonality;
};
🔐 Safety & Ethics Implementation
Content Filtering Pipeline
Multi-Layer Safety System:
const safetyPipeline = async (content, context) => {
// Layer 1: Automated content filtering
const toxicityCheck = await analyzeToxicity(content);
if (toxicityCheck.score > 0.7) return { safe: false, reason: "toxicity" };
// Layer 2: Context appropriateness
const contextCheck = validateContextAppropriate(content, context);
if (!contextCheck.appropriate) return { safe: false, reason: "context" };
// Layer 3: Character consistency
const characterCheck = validateCharacterConsistency(content, TETO_PERSONALITY);
if (!characterCheck.consistent) return { safe: false, reason: "character" };
// Layer 4: Privacy protection
const privacyCheck = detectPrivateInformation(content);
if (privacyCheck.hasPrivateInfo) return { safe: false, reason: "privacy" };
return { safe: true };
};
Privacy Protection
Data Handling Principles:
- Local Memory Storage - Conversation history stored locally, not sent to external services
- Anonymized Analytics - Usage patterns tracked without personal identifiers
- Selective Context - Only relevant conversation context sent to AI models
- User Consent - Clear communication about data usage and AI processing
📊 Performance Optimization
Response Time Optimization
Caching Strategy:
const CACHE_CONFIG = {
// Frequently accessed personality responses
personality_responses: {
ttl: 3600, // 1 hour cache
max_entries: 1000
},
// Vision analysis results
image_analysis: {
ttl: 86400, // 24 hour cache
max_entries: 500
},
// User preference data
user_preferences: {
ttl: 604800, // 1 week cache
max_entries: 10000
}
};
Async Processing Pipeline:
const processMessageAsync = async (message) => {
// Start multiple processes concurrently
const [
contextData,
memoryData,
userPrefs,
intentAnalysis
] = await Promise.all([
getConversationContext(message.channel_id),
retrieveRelevantMemories(message.content),
getUserPreferences(message.author.id),
analyzeMessageIntent(message.content)
]);
// Generate response with all context
return generateResponse({
message,
context: contextData,
memories: memoryData,
preferences: userPrefs,
intent: intentAnalysis
});
};
Resource Management
Model Loading Strategy:
const MODEL_LOADING = {
// Keep language model always loaded
language_model: "persistent",
// Load vision model on demand
vision_model: "on_demand",
// Pre-load voice synthesis during voice channel activity
voice_synthesis: "predictive",
// Cache embeddings for frequent users
user_embeddings: "lru_cache"
};
🔧 Configuration & Customization
Personality Tuning Parameters
Adjustable Personality Aspects:
const TUNABLE_PARAMETERS = {
response_length: {
min: 50,
max: 500,
preferred: 150,
adapt_to_context: true
},
emoji_usage: {
frequency: 0.3, // 30% of messages
variety: "high", // Use diverse emoji
context_appropriate: true
},
reference_frequency: {
past_conversations: 0.2, // Reference 20% of the time
user_interests: 0.4, // Reference 40% of the time
server_culture: 0.6 // Adapt 60% of the time
},
interaction_style: {
formality: 0.2, // Very casual
playfulness: 0.7, // Quite playful
supportiveness: 0.9 // Very supportive
}
};
Model Configuration
Environment-Based Configuration:
const getModelConfig = (environment) => {
const configs = {
development: {
model: "gpt-3.5-turbo",
response_time_target: 3000,
logging_level: "debug",
cache_enabled: false
},
production: {
model: "gpt-4-turbo-preview",
response_time_target: 1500,
logging_level: "info",
cache_enabled: true,
fallback_model: "gpt-3.5-turbo"
},
testing: {
model: "mock",
response_time_target: 100,
logging_level: "verbose",
deterministic: true
}
};
return configs[environment] || configs.production;
};
📈 Monitoring & Analytics
Performance Metrics
Key Performance Indicators:
- Response Time - Average time from message to response
- Personality Consistency - Measure of character trait adherence
- User Engagement - Conversation length and frequency metrics
- Multi-modal Success - Success rate of image/voice processing
- Memory Accuracy - Correctness of referenced past conversations
Analytics Dashboard Data:
const METRICS_TRACKING = {
response_times: {
text_only: "avg_ms",
with_image: "avg_ms",
with_voice: "avg_ms",
complex_context: "avg_ms"
},
personality_scores: {
cheerfulness_consistency: "percentage",
helpfulness_rating: "user_feedback_score",
character_authenticity: "consistency_score"
},
feature_usage: {
voice_interactions: "daily_count",
image_analysis: "daily_count",
memory_references: "accuracy_percentage",
emotional_support: "satisfaction_rating"
}
};
🚀 Future Enhancements
Planned AI Improvements
Advanced Memory System:
- Graph-based relationship mapping
- Emotional memory weighting
- Cross-server personality consistency
- Predictive conversation preparation
Enhanced Multimodal Capabilities:
- Real-time video stream analysis
- Live drawing/art creation feedback
- Music generation and composition
- Interactive storytelling with visuals
Adaptive Learning:
- Server-specific personality adaptations
- Individual user relationship modeling
- Cultural context learning
- Improved humor and timing
Technical Optimizations:
- Local LLM deployment options
- Edge computing for faster responses
- Improved caching strategies
- Better resource utilization
This AI architecture provides the foundation for Kasane Teto's natural, engaging personality while maintaining safety, consistency, and performance. The modular design allows for continuous improvement and feature expansion while preserving the core character experience users love.
For implementation details, see the Development Guide. For configuration options, see Configuration.